a2 United States Patent

Arora et al.

US009235520B2

US 9,235,520 B2
Jan. 12, 2016

(10) Patent No.:
(45) Date of Patent:

(54) PROTOCOL FOR CONFLICTING MEMORY
TRANSACTIONS
(75) Inventors: Manoj K. Arora, Bangalore (IN);
Robert G. Blankenship, Tacoma, WA
(US); Rahul Pal, Bangalore (IN);
Dheemanth Nagaraj, Bangalore (IN)
(73)

Assignee: Intel Corporation, Santa Clara, CA

(US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 128 days.

@
(22)

Appl. No.: 13/997,900

PCT Filed: Dec. 20,2011

(86) PCT No.:

§371 (D),
(2), (4) Date:

PCT/US2011/066190

Jun. 25,2013

(87) PCT Pub. No.: W0O2013/095388

PCT Pub. Date: Jun. 27,2013

Prior Publication Data

US 2014/0359230 A1 Dec. 4, 2014

(65)

Int. CI.
GOGF 12/00
GOGF 12/08
GOGF 13/14
GOGF 13/38
USS. CL
CPC ... GOGF 12/0815 (2013.01); GOGF 12/0831
(2013.01); GOGF 13/14 (2013.01); GOGF 13/38
(2013.01); GO6F 12/0824 (2013.01); GO6F
12/0828 (2013.01)

(51)
(2006.01)
(2006.01)
(2006.01)
(2006.01)

(52)

(58) Field of Classification Search
None

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

2008/0005487 Al 1/2008 Hum et al.
2008/0126750 Al 5/2008 Sistla
2009/0113139 Al 4/2009 Pudipeddi et al.
2010/0005246 Al 1/2010 Beers et al.
2010/0332767 Al 12/2010 Kumar et al.
OTHER PUBLICATIONS

International Preliminary Report on Patentability for PCT Interna-
tional Application No. PCT/US2011/066190, mailed Jul. 3, 2014, 6
pages.

“PCT, International Search Report of the International Searching
Authority for Int’l Application No. PCT/US2011/066190”, (Sep. 14,
2012), Whole Document.

Primary Examiner — Duc Doan
(74) Attorney, Agent, or Firm — Blakely, Sokoloff, Taylor &
Zafman LLP

(57) ABSTRACT

Embodiments of the invention describe a cache coherency
protocol that eliminates the need for ordering between mes-
sage classes and also eliminates home tracker preallocation.
Embodiments of the invention describe a less complex con-
flict detection and resolution mechanism (at the home agent)
without any performance degradation in form of bandwidth
or latency compared to prior art solutions.

Embodiments of the invention describe a home agent that
may receive request messages, e.g., data ownership request
messages and data request messages, which include issuance
data indicating an order of the respective message issued.
Said home agent may determine whether an early or late
conflict exists based, at least in part, on a received conflict
response message and the issuance data of a most recent
completed transaction.

20 Claims, 6 Drawing Sheets

Core
101

Core | eeesaen Core
102 109

S

Memory
Controller
110

Crossbar Router/Non-routing
global links interface
115

Interconnects—===""____|
120

Vi 'Old

US 9,235,520 B2

Sheet 1 of 6

I 0clL

V@bmccoo_ouc_

Sl oLl

4

A 4

Jan. 12, 2016

aoeLIL1UI SYUI| |BqO|6 Jajjonuo)n
BunnoJ-UuoN/J2INoYy JegssolD k Alows
601 201 101
?00 L. ... 210D 210D
00T

U.S. Patent

US 9,235,520 B2

Sheet 2 of 6

Jan. 12, 2016

U.S. Patent

. ¢ 9l
L0g Jusbe Z0z usbe
—
BWOoH Buiyoen
0g Jusbe €0z Juebe
Buiyoen Buiyoen
o]
0¢¢
logebe | |70z usbe
SWOH Buiyoen
0¢ 1usbe coz uabe
Buiyoen Buiyoen

ove
L0g 1usbe Z0zZ ebe
BWOoH Buiyoen
0g 1usbe €0z Juabe
Buiyoen Buiyoen
Ool¢c
L0z Jusbe Z0Z uabe
SWOH Buiyoen
¥0g webe €0z Juabe
Buiyoen Buiyoen

U.S. Patent

Jan. 12, 2016

303

Sheet 3 of 6

302

e

Bit Dats
Match

353

FIG. 3A

& Bonygy,

E j-»E ﬁQﬁ
| IO

paps BHE

i E->§ E -

vy

mQatac_‘F

i->F

FiG. 3B

US 9,235,520 B2

MC e, Memory Controlier

U.S. Patent Jan. 12, 2016 Sheet 4 of 6 US 9,235,520 B2

- uﬁz 401

FIG. 4A

453 452 451

.. Memory Controller
Memory Read
Invalid State
Exclusive State

.. Bhared State
Forward State

Nmmﬁaﬁgiﬁ No Bit Daia
DaeC ECMB 1 e i
I->E Spplode
—— E>§ [o s RspFwds B
4 on®

FIG. 4B

US 9,235,520 B2

Sheet 5 of 6

Jan. 12, 2016

U.S. Patent

Q|
(=,
0|

S 'Old

0gs
JOJOBUUOY) HJOMBN

0vs
Ja|josuo) 8o1A8([eJayduad

0€S
AowsN we)sAg

025 shg weaisAg

0.S
Aynouaip Jy/euusiuy

0lLS
J0Ss9004d

09¢
soeL9U| Josn

U.S. Patent Jan. 12,2016

651 610
N — //
gl1/1]0 811 jem
2z
612
ﬁzj
640 / g
613
614

Sheet 6 of 6

US 9,235,520 B2

631

632

633

634

FIG.6

US 9,235,520 B2

1
PROTOCOL FOR CONFLICTING MEMORY
TRANSACTIONS

CLAIM OF PRIORITY

This application is a U.S. National Phase application under
35 US.C. §371 of International Application No. PCT/
US2011/066190, filed Dec. 20, 2011, entitled “PROTOCOL
FOR CONFLICTING MEMORY TRANSACTIONS,” the
entire contents of which are incorporated herein by reference.

FIELD

Embodiments of the invention generally pertain to com-
puting devices and more particularly to memory transaction
management.

BACKGROUND

Computer systems typically include one or more proces-
sors or processing cores. These processors/cores are opera-
tively coupled to other system components such as memory
controllers, input/output hubs, and mass storage via some
form of hardware connections, e.g., interconnects.

A communication protocol may be used to enable commu-
nication between these system components. Many such pro-
tocols provide for different layers to handle communication
tasks. In some protocols, a physical layer is the layer that
transmits messages along an interconnect and receives and
processes messages from a corresponding physical layer of
one or more other devices. Said physical layer may be
coupled to a link layer that performs various functions such as
error detection and correction. Said link layer may be coupled
to a protocol layer which receives message packets from the
link layer and further process them to route them to their
appropriate destination locations.

An example protocol for use with a link as described above
is the QuickPath Interconnect (QPI) protocol which is for
point-to-point interconnects and provides for a multi-layer
communication protocol for communication between various
system devices such as processor cores, chipsets and so forth.

Each of the above described processors/cores may have an
associated cache memory. Cache memory in computer sys-
tems may be kept coherent by managing transactions for
memory addresses associated with particular locations in the
system. Thus, a system’s efficiency is directly related to how
it manages the conflicts that arise amongst the different
caches.

BRIEF DESCRIPTION OF THE DRAWINGS

The following description includes discussion of figures
having illustrations given by way of example of implementa-
tions of embodiments of the invention. The drawings should
be understood by way of example, and not by way of limita-
tion. As used herein, references to one or more “embodi-
ments” are to be understood as describing a particular feature,
structure, or characteristic included in at least one implemen-
tation of the invention. Thus, phrases such as “in one embodi-
ment” or “in an alternate embodiment” appearing herein
describe various embodiments and implementations of the
invention, and do not necessarily all refer to the same embodi-
ment. However, they are also not necessarily mutually exclu-
sive.

FIG. 1A is a block diagram of a multi-core processor
utilizing an embodiment of the invention.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2 is a flow diagram describing coherency behavior
according to an embodiment of the invention.

FIG. 3A and FIG. 3B are line graphs illustrating conflict
resolution scenarios according to an embodiments of the
invention.

FIG. 4A and FIG. 4B are line graphs illustrating conflict
resolution scenarios according to an embodiments of the
invention.

FIG. 5 is block diagram of a system that may utilize an
embodiment of the invention.

FIG. 6 is a block diagram of a home agent using a RTID
History Queue (RHQ) to track issuance data for completed
transaction according to an embodiment of the invention.

Descriptions of certain details and implementations follow,
including a description of the figures, which may depict some
or all of the embodiments described below, as well as discuss-
ing other potential embodiments or implementations of the
inventive concepts presented herein. An overview of embodi-
ments of the invention is provided below, followed by a more
detailed description with reference to the drawings.

DETAILED DESCRIPTION

Embodiments of the invention describe a cache coherency
protocol that eliminates the need for ordering message classes
and also eliminates home tracker preallocation. Embodi-
ments of the invention describe a less complex conflict detec-
tion and resolution mechanism (at the home agent) without
any performance degradation in the form of bandwidth or
latency compared to prior art solutions.

FIG. 1 is a block diagram of a multi-core processor utiliz-
ing an embodiment of the invention. In this embodiment,
processor 100 includes cores 101, 102 . . . 109. In some
embodiments, each of said cores have separate caches, while
in other embodiments said cores share the same cache. Pro-
cessor 100 may also include integrated memory controller
110 to provide access for cores 101-109 to system memory.

In this embodiment, processor 100 includes integrated
crossbar router/non-routing global interface 115 to manage
connecting the processor to interconnects 120. The physical
connectivity of each of interconnect links 120 may comprise
differential signal pairs plus a differential forwarded clock.
Each port supports a link pair of uni-directional links to
complete the connection between two system components
(e.g., processor 100 and another system component). This
supports traffic in both directions simultaneously. Said sys-
tem interconnect may be thought of as comprising five layers:
physical, link, routing, transport, and protocol.

The physical layer may comprise the actual wires carrying
the signals, as well as circuitry and logic to support ancillary
features required in the transmission and receipt of bit data.
The link layer may describe the layer responsible for reliable
transmission and flow control. The routing layer may provide
the framework for directing packets through the fabric. The
transport layer may be an architecturally defined layer pro-
viding advanced routing capability for reliable end-to-end
transmission. The protocol layer may comprise a high-level
set of rules for exchanging packets of data between devices.

Said system interconnect utilized by processor 100 may
further include a cache coherency protocol to keep the dis-
tributed memory and caching structures coherent during sys-
tem operation. It may support both low-latency source snoop-
ing and a scalable home snoop behavior. The coherency
protocol provides for direct cache-to-cache transfers for opti-
mal latency.

In embodiments of the invention, said coherency protocol
may include two distinct types of agents: caching agents and

US 9,235,520 B2

3

home agents. Thus, processor 100 may have both types of
agents and, in some embodiments, multiple agents of each
type.

A caching agent as referred to herein describes a module or
logic which may initiate transactions into coherent memory,
and may retain copies in its own cache structure. A caching
agent may also provide copies of the coherent memory con-
tents to other caching agents.

A home agent as referred to herein describes a module or
logic which may service coherent transactions, including
handshaking as necessary with caching agents. A home agent
supervises a portion of the coherent memory. In some
embodiments, home agent modules/logic are not included in
the memory controller circuits for main memory, but rather
additional interconnect logic which maintains the coherency
for a given address space. Said home agent may also be
responsible for managing the conflicts that might arise among
the different caching agents. It provides the appropriate data
and ownership responses as required by a given transaction’s
flow.

FIG. 2 is a flow diagram describing coherency behavior
according to an embodiment of the invention. Flow diagrams
asillustrated herein provide examples of sequences of various
process actions. Although shown in a particular sequence or
order, unless otherwise specified, the order of the actions can
be modified. Thus, the illustrated implementations should be
understood only as examples, and the illustrated processes
can be performed in a different order, and some actions may
be performed in parallel. Additionally, one or more actions
can be omitted in various embodiments of the invention; thus,
not all actions are required in every implementation. Other
process flows are possible.

Home snoop coherency behavior is shown in general in
process 200. Said home snoop coherency behavior defines the
home agent as responsible for the snooping of other caching
agents. In this example, home agent 201 and caching agents
202, 203 and 204 may each be different processors or pro-
cessing cores of a system.

In this example, operation 210 is shown as caching agent
203 issuing a request to home agent 201 for contents of a
memory location supervised by the home agent. In response
to receiving this request, home agent 201 may access its
directory structure to target a snoop to the caching agent that
may have a copy of the memory in question; In this example,
caching agent 202 has a copy of the memory, and thus home
agent 201 issues a snoop message to caching agent 202 as
shown in operation 220.

In operation 230, caching agent 202 responds back to home
agent 201 with the status of the address (e.g., whether the
contents of the memory address have been modified). In this
example, the processor acting as caching agent 202 has a copy
of'the line in the proper state, so the data is delivered directly
to requesting cache agent 203, as shown in operation 230.

Home agent 201 resolves any conflicts, and if necessary,
returns the data to original requesting cache agent 203. In
some embodiments, home agent 201 only returns data to the
original requesting cache agent after first checking to see if
data was delivered by another caching agent (e.g., as shown in
operation 230) and completes the transaction, as shown in
operation 240.

The above described home snoop behavior implementa-
tion typically includes a directory structure to target the snoop
to the specific caching agents that may have a copy of the data.
This has the effect of reducing the number of snoops and
snoop responses that the home agent has to deal with on the
interconnect fabric.

10

15

20

25

30

35

40

45

50

55

60

65

4

In embodiments of the invention, the home agent may
consider two types of conflicts. An early conflict is a type of
conflict where the conflicting caching agent does not yet have
a copy of the requested cache line. The second type of conflict
may be referred to as a late conflict (or alternatively as a true
conflict). In such a conflict, the caching agent providing the
conflict response has been sent the latest copy of the requested
cache line by home agent (Data/CMP is in flight to Caching
agent). In this scenario, the home agent may send a second
(follow-up) snoop to extract the most recent copy of the line.

Prior art solutions require the home agent to track the
ordering between the cache line request and the above
described snoop message response in order to determine
whether a conflictis an early conflict or a late conflict, thereby
causing additional processing and system resources to be
used. Embodiments of the invention utilizing a messaging
structure and protocol to eliminate ordering operations and
require minimal tracking between the Caching agent and the
Home agent.

FIG. 3A and FIG. 3B are line graphs illustrating conflict
resolution scenarios according to an embodiments of the
invention. FIG. 3A illustrates the detection of a late conflict
utilizing message structures according to an embodiment of
the invention. In this example, caching agent 302 is shown to
issue a read access request (RdCode) to home agent 301 fora
cache line supervised by the home agent. Caching agent 303
has a copy of the cache line requested by caching agent 302,
and thus home agent 301 issues a snoop message (SnpCode)
to caching agent 303. Home agent sends the cache line in a
data packet (DataC_E_Cmp) to caching agent 302.

Caching agent 303 may send an invalid response to home
agent 301 (Rspl), indicating that the cache line in memory is
current and caching agent 303 doesn’t have the line). Caching
agent 303 may further send a read for ownership request
(RdInvOwn) for the cache line to home agent 301. The home
agent sends a snoop to invalidate the current owner (Snpln-
vOwn) request to caching agent 302 on behalf of the Rdln-
vOwn message from caching agent 303.

Caching agent 302 responds with a conflict response
(RspChnfit) because from, its perspective, its RdCode request
has still not been completed, as it has yet to receive the cache
line from home agent 301.

In this example, the above conflict may be described as a
late conflict. In this embodiment, each of the above described
messages includes issuance data indicating an order in which
the respective message issued. For example, the issuance data
may comprise a sequence number, where the sequence num-
ber is incremented by the caching agents in response to each
new data request message including the transaction identifier
being issued from one of the caching agents. In another
example, said issuance data may comprise bit data to be
toggled by the caching agents in response to a new data
request message including the transaction identifier being
issued from one of the caching agents. In another example,
said issuance data may be based on variables available in
request and response messages that are unique to an outstand-
ing transaction (e.g., address bits). Any other variations of
issuance data that allow implicit determination of order by
home and caching agents without sending any extra informa-
tion may also be used.

In this example, said issuance data is the above described
bit data, toggled between a ‘0’ state (represented by solid lines
in line graph 300) and a *1° state (represented by dashed lines
in line graph 300). In this embodiment, if the bit data of the
RspCnfit message is the same as the bit data of the last issued
transaction (in this example, the RdInvOwn message), then it

US 9,235,520 B2

5

is determined that a late conflict exists. In other embodiments,
matching bit data may indicate an early conflict.

Caching agent 302 acknowledges the conflict, and home
agent 301 sends the caching agent a message to invalidate its
copy of the cache line (Cmp_Fwd_InvOwn). Caching agent
302 sends RspFwdE to the Home Agent, and caching agent
302 sends this data to caching agent 303 (DataC_E).

Thus, in some embodiments of the invention, caching
agents ensure that two subsequent transactions from any two
caching agents to the home agent (with same request trans-
action ID (RTID)) are originated with different issuance data.
As shown in FIG. 6, the home agent may have an RTID
History Queue (RHQ) 610 to track the issuance data 651 for
completed transactions. In one embodiment, the RHQ 610 is
preallocated for all requestors in the system and has one entry
621 per RTID 631 and stores the issuance data 651 of the
transaction determined at request completion. RspCnflt mes-
sages from caching agents to home agents may implicitly or
explicitly carry the issuance data at the respective caching
agent; if this issuance data 651 matches with the correspond-
ing RHQ entry 621 then it is a late conflict, otherwise it is an
early conflict (e.g., as shown in FIG. 3B and described
below).

FIG. 3B illustrates the detection of an early conflict utiliz-
ing message structures according to an embodiment of the
invention. As shown in line graph 350, caching agent 353
sends a read for ownership request (RdInvOwn) to home
agent 351 for a cache line supervised by the home agent.
Caching agent 352 is shown to subsequently issue a read
access request (RdCode) to home agent 351 for the cache line.

Home agent 351 sends a snoop to invalidate the current
owner (SnplnvOwn) to caching agent 352 on behalf of the
RdInvOwn message from caching agent 353. Caching agent
352 responds with a conflict response (RspCnfit) because
from, its perspective, its RdCode request has still not been
completed as it has yet to receive the requested cache line
from home agent 351.

In this example, the above conflict may be described as an
early conflict. As described above, each of the above
described messages includes issuance data indicating an
order of the respective message issued. In this example, said
issuance data is the above described bit data, toggled between
a ‘0’ state (represented by solid lines in line graph 350) and a
‘1’ state (represented by dashed lines in line graph 350) In this
embodiment, if the bit data of the RspCnflt message differs
from the bit data of the last issued transaction (in this
example, the RdCode message), then it is determined that an
early conflict exists.

Home agent 351 sends the cache line in a data packet
(DataC_E_Cmp) to caching agent 353, and subsequently a
snoop message (SnpCode) to caching agent 353 on behalf of
the RdCode issued by caching agent 352. Caching agent 353
responds to the snoop request with a current version of the
cache line (RspFwdS), and also sends the cache line to cach-
ing agent 352 to fulfill the RdCode request. Caching agent
352 and home agent 351 acknowledges the resolution of the
conflict, and the completion of the RdCode request.

Thus, in the embodiments illustrated in FIG. 3A and FIG.
3B, the determination of an early or late conflict is based the
on arrival of the RspCnflt message itself. Issuance data is
passed along with the RspCnflt message to the home agent.
By comparing this issuance data with the issuance data of the
last completed transaction (for a given RTID), the home agent
detects whether it is an early or late conflict.

Therefore, home snoop protocols according to embodi-
ments ofthe invention remove the requirement of home chan-
nel ordering (i.e., ordering between request and snoop

20

25

40

45

6

response message) and home preallocation (i.e., guaranteed
sinking of request to the home agent), which prior art solu-
tions require in order to distinguish late versus early conflicts.
Furthermore, embodiments of the invention do not require
any extra messaging in a non-conflict scenario.

In some embodiments of the invention, the above described
snoop response message class is separate from the request
message class as a means to avoid deadlock. If snoop
responses share the same message class with requests then it
is possible that a request waits for a snoop response that is
stuck behind a conflicting request; since embodiments of the
invention eliminate home preallocation (i.e., guaranteed sink-
ing of all requests) the home agent is not able to sink the
conflicting request and may result in a deadlock.

In one embodiment, as shown in FIG. 6, a conflict resolu-
tion process is utilized wherein RHQ 610 has two additional
fields: a latecnflt_bit and a pointer to the Home Tracker (HT)
640. Ackenflt messages may belong to a separate class to
enable sinking in the RHQ 610. The latecnfit_bit in RHQ may
be set if the issuance data 651 associated with the respective
RspCnflt message matches corresponding RHQ entry 621 or
if Ackenflt message arrives before the RspCnfit message. If
Ackenfit or RspCnfit is received with latecnflt_bit set, the
home agent may send CMP_FWD*. The home agent sends
CMP* for Ackenflt corresponding to early conflicts. Late
conflicts may be determined based on requestor NID/RTID in
a RspCnfit message, which may also be stored as pointer to a
Home Tracker (HT) 640 in the RHQ 610.

FIG. 4A and FIG. 4B are line graphs illustrating conflict
resolution scenarios according to an embodiments of the
invention. The conflict scenario shown in line graph 400 of
FIG. 4A is similar to that of line graph 300 of FIG. 3A, and
thus, the requests shown in this graph are not described in
detail; however, in this example, home agent 401 forwards
either a Fwd or a FwdEarly message in response to the con-
flict response (RspCnfit) sent from caching agent 402 (which
was sent in response to the RdInvOwn request from caching
agent403)—i.e., home agent 401 sends one of a Fwd message
and a FwdEarly message in response to a late conflict and an
early conflict, respectively.

Similar to the embodiment illustrated in FIG. 3A, if the bit
data of the RspCnflt message is the same as the bit data of the
last issued transaction (in this example, the RdInvOwn mes-
sage), then it is determined that a late conflict exists, and thus
home agent 401 sends a Fwd message (i.e., a Fwd_InvOwn
message) to caching agent 402.

The conflicts shown in line graph 450 of FIG. 4B are
similar to that of line graph 350 of FIG. 3B (and thus, the
requests shown in this graph are not described in detail)—
caching agent 453 sends a read for ownership request (RdIn-
vOwn) to home agent 451 for a cache line supervised by the
home agent; caching agent 452 is shown to subsequently
issue a read access request (RdCode) to home agent 451 for
the cache line.

Similar to FIG. 4A, the determination of an early or late
conflict is based on if the bit data of the RspCnflt message is
the same as the bit data of the last issued transaction. Thus,
since the bit data of the RspCnflt message differs from the bit
data of the last issued transaction (in this example, the
RdCode message), then it is determined that an early conflict
exists and home agent 451 sends a FwdEarly message to
caching agent 452.

FIG. 5 is block diagram of a system that may utilize an
embodiment of the invention. System 500 may describe a
server platform, or may be included in, for example, a desktop
computer, a laptop computer, a tablet computer, a netbook, a
notebook computer, a personal digital assistant (PDA), a

US 9,235,520 B2

7

server, a workstation, a cellular telephone, a mobile comput-
ing device, an Internet appliance, an MP3 or media player or
any other type of computing device.

System 500 may include processor 510 to exchange data,
via system bus 520, with user interface 560, system memory
530, peripheral device controller 540 and network connector
550. Processor 510 may be a plurality of processors and/or a
plurality of processing cores that execute the messaging
structure and protocol described above in order to differenti-
ate between early and late memory request conflicts, and thus
eliminate the extraneous tracking and ordering operations of
the prior art.

System 500 may further include antenna and RF circuitry
570 to send and receive signals to be processed by the various
elements of system 500. The above described antenna may be
a directional antenna or an omni-directional antenna. As used
herein, the term omni-directional antenna refers to any
antenna having a substantially uniform pattern in at least one
plane. For example, in some embodiments, said antenna may
be an omni-directional antenna such as a dipole antenna, or a
quarter wave antenna. Also for example, in some embodi-
ments, said antenna may be a directional antenna such as a
parabolic dish antenna, a patch antenna, or a Yagi antenna. In
some embodiments, system 500 may include multiple physi-
cal antennas.

While shown to be separate from network connector 550, it
is to be understood that in other embodiments, antenna and
RF circuitry 570 may comprise a wireless interface to operate
in accordance with, but not limited to, the IEEE 802.11 stan-
dard and its related family, Home Plug AV (HPAV), Ultra
Wide Band (UWB), Bluetooth, WiMax, or any other form of
wireless communication protocol.

Various components referred to above as processes, serv-
ers, or tools described herein may be a means for performing
the functions described. Each component described herein
includes software or hardware, or a combination of these.
Each and all components may be implemented as software
modules, hardware modules, special-purpose hardware (e.g.,
application specific hardware, ASICs, DSPs, etc.), embedded
controllers, hardwired circuitry, hardware logic, etc. Soft-
ware content (e.g., data, instructions, configuration) may be
provided via an article of manufacture including a non-tran-
sitory, tangible computer or machine readable storage
medium, which provides content that represents instructions
that can be executed. The content may result in a computer
performing various functions/operations described herein.

A computer readable non-transitory storage medium
includes any mechanism that provides (i.e., stores and/or
transmits) information in a form accessible by a computer
(e.g., computing device, electronic system, etc.), such as
recordable/non-recordable media (e.g., read only memory
(ROM), random access memory (RAM), magnetic disk stor-
age media, optical storage media, flash memory devices,
etc.). The content may be directly executable (“object” or
“executable” form), source code, or difference code (“delta”
or “patch” code). A computer readable non-transitory storage
medium may also include a storage or database from which
content can be downloaded. Said computer readable medium
may also include a device or product having content stored
thereon at a time of sale or delivery. Thus, delivering a device
with stored content, or offering content for download over a
communication medium may be understood as providing an
article of manufacture with such content described herein.

The invention claimed is:
1. An apparatus comprising:
a processor including a plurality of cores;

10

15

20

25

30

35

40

45

50

55

60

65

8

first and second caching agents each executed via one of

the processor cores; and

a home agent executed via one of the processor cores, the

home agent to:

receive a data request message, for contents of a memory
location, from the first caching agent and including a
transaction identifier;

receive a data ownership request message, for the con-
tents of the memory location, from the second caching
agent and including the transaction identifier, wherein
the data ownership request message and the data
request message each further include issuance data
indicating an order of the respective message issued;

send an invalidating snoop message to the first caching
agent in response to receiving the data ownership
message and the data request message for the memory
location;

receive a conflict response message from the first cach-
ing agent; and

determine whether the first caching agent includes a
copy of the contents of the memory location based, at
least in part, on the conflict response message and the
issuance data of a most recent completed transaction
for the transaction identifier.

2. The apparatus of claim 1, wherein the invalidating snoop
message is included in a different message class than data
request messages from the first and second caching agents.

3. The apparatus of claim 1, the home agent to further:

in response to determining the first caching agent includes

a copy of the contents of the memory location, send an
invalidation and conflict complete message to the first
caching agent.

4. The apparatus of claim 1, the home agent to further:

in response to determining the first caching agent does not

include a copy of the contents of the memory location,
send a conflict complete message to the first caching
agent.

5. The apparatus of claim 1, wherein the issuance data
comprises a sequence number to be incremented by first and
second caching agents in response to a data request message
including the transaction identifier being issued from one of
the caching agents.

6. The apparatus of claim 1, wherein the issuance data
comprises bit data to be toggled by first and second caching
agents in response to a data request message including the
transaction identifier being issued from one of the caching
agents.

7. A method comprising:

receiving a data request message, for contents of a memory

location, from a first caching agent and including a trans-
action identifier;

receiving a data ownership request message, for the con-

tents of the memory location, from a second caching
agent and including the transaction identifier, wherein
the data ownership request message and the data request
message each further include issuance data indicating an
order of the respective message issued;

sending an invalidating snoop message to the first caching

agent in response to receiving the data ownership mes-
sage and the data request message for the memory loca-
tion;

receiving a conflict response message from the first cach-

ing agent; and

determining whether the first caching agent includes a

copy of the contents of the memory location based, at

US 9,235,520 B2

9

least in part, on the conflict response message and the
issuance data of a most recent completed transaction for
the transaction identifier.

8. The method of claim 7, wherein the invalidating snoop
message is included in a different message class than data
request messages from the first and second caching agents.

9. The method of claim 7, further comprising:

in response to determining the first caching agent includes

a copy of the contents of the memory location, sending
aninvalidation and conflict complete message to the first
caching agent.

10. The method of claim 7, further comprising:

in response to determining the first caching agent does not

include a copy of the contents of the memory location,
sending a conflict complete message to the first caching
agent.

11. The method of claim 7, wherein the issuance data
comprises a sequence number to be incremented by first and
second caching agents in response to a data request message
including the transaction identifier being issued from one of
the caching agents.

12. The method of claim 7, wherein the issuance data
comprises bit data to be toggled by first and second caching
agents in response to a data request message including the
transaction identifier being issued from one of the caching
agents.

13. A system comprising:

a plurality of processors;

a memory;

first and second caching agents included in one of the

processors; and

a home agent included in one of the processors, the home

agent to:
receive a data request message, for contents of the

10

20

25

30

memory, from the first caching agent and including a 35

transaction identifier;

receive a data ownership request message, for the con-
tents the memory, from the second caching agent and
including the transaction identifier, wherein the data
ownership request message and the data request mes-
sage each further include issuance data indicating an
order of the respective message issued;

40

10

send an invalidating snoop message to the first caching
agent in response to receiving the data ownership
message and the data request message for the contents
of the memory;

receive a conflict response message from the first cach-
ing agent; and

determine whether the first caching agent includes a
copy of the contents of the memory based, at least in
part, on the conflict response message and the issu-
ance data of a most recent completed transaction for
the transaction identifier.

14. The system of claim 13, wherein the invalidating snoop
message is included in a different message class than data
request messages from the first and second caching agents.

15. The system of claim 13, the home agent to further:

in response to determining the first caching agent includes

a copy of the contents of the memory, send an invalida-
tion and conflict complete message to the first caching
agent.

16. The system of claim 13, the home agent to further:
in response to determining the first caching agent does not

include a copy of the contents of the memory, send a
conflict complete message to the first caching agent.

17. The system of claim 13, wherein the issuance data
comprises a sequence number to be incremented by first and
second caching agents in response to a data request message
including the transaction identifier being issued from one of
the caching agents.

18. The system of claim 13, wherein the issuance data
comprises bit data to be toggled by first and second caching
agents in response to a data request message including the
transaction identifier being issued from one of the caching
agents.

19. The system of claim 13, wherein each of the plurality of
processors comprises a processing core included in a multi-
COre processor.

20. The system of claim 13, further comprising:

an antenna; and
radio frequency circuitry coupled to the antenna to receive
signal data to be processed by the system.

#* #* #* #* #*

